חAmIBIA UПIVERSITY

OF SCIEMCE AMD TECHMOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 35BAMS	LEVEL: 6
COURSE CODE: NUM701S	COURSE NAME: NUMERICAL METHODS 1
SESSION: \quad JUNE 2022	PAPER: THEORY
DURATION: \quad HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE
MODERATOR:	Prof S.S. MOTSA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments

None

Problem 1 [30 marks]
1.1. If $f \in C^{n+1}[a, b]$, prove that for any points x and c in $[a, b]$, we have

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+R_{n}(x) \quad \text { where } \quad R_{n}(x)=\frac{1}{n!} \int_{c}^{x} f^{(n+1)}(t)(x-t)^{n} d t \tag{12}
\end{equation*}
$$

[Hint: use integration by parts $\int u d v=u v-\int v d u$ with appropriate choice of u and v.]
1.2. Consider $f(x)=-\frac{1}{2} x^{2}+3 x-4=0, x \in[3.5,4.5]$.

Use Newton's method to approximate the root of the above equation after three iterations. [4]
1.3. The equation $x=g(x)=\left(x^{2}-1\right) / 3$ has a root in $[-1,1]$.
1.3.1. State the fixed-point Theorem.
1.3.2. Prove that the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ with $x_{k+1}=g\left(x_{k}\right)$ converges to the fixed-point of the equation given above in 1.3. for any choice of $x_{0} \in[-1,1]$.

Problem 2. [40 marks]
2.1. Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates the set of data points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.
2.2. Use the results in 2.1. to determine the Lagrange and Newton's form of the polynomial that interpolates the set of data points $(0,1),(1,6)$ and $(2,17)$.
2.3. Establish the error term for the rule:

$$
f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[3 f(x+h)-10 f(x)+12 f(x-h)-6 f(x-2 h)+f(x-3 h)]
$$

Problem 3. [30 marks]
Given the IVP

$$
\begin{equation*}
y^{\prime}=t y+y+t^{2}, \quad y(0)=2 \tag{1}
\end{equation*}
$$

3.1 Write down in details the fouth-order Runge-Kutta (RK4) algorithm to solve the specific IVP given by Eq. (1).
3.2 Given the table below, use the result of question 3.1 to compute the missing values. [20]

k	t_{k}	k_{1}	k_{2}	k_{3}	k_{4}	y_{k}
1	0.08	2	2.1648		2.35403	2.17369
2	0.16		2.55439		2.78496	
3		2.78488	3.0281			2.62174
4		3.30856		3.61874	3.94524	
5	0.4		4.30325		4.71963	

God bless you !!!

